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Abstract 
Business process modelling is an important task in business transformation initiatives. Process models 
visualize the working procedures of a company and pinpoint the way in which business value is created. 
Based on process models, functional requirements on IS are derived and decisions on IS investments 
are made, for instance. However, in case process models become too large, employees will hardly un-
derstand them, which restricts the potential benefits associated with business process modelling. There-
fore, the decomposition of process models is a means of reducing their complexity by delineating cor-
responding subprocess models. However, there are few commonly accepted approaches for decompos-
ing process models only and the properties that characterize a well-done decomposition are rather un-
clear. We thus revert to the good decomposition model of Wand and Weber, which was established for 
decomposing IS, as a means to judge the quality of decomposed process models. The present study 
develops metrics for evaluating decomposed process models in the eEPC notation against the good 
decomposition model of Wand and Weber. An application of the metrics to a process model from a 
cooperation project shows that the metrics provide a helpful way of objectively assessing the quality of 
decompositions in process modelling by using the good decomposition model. 
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1 Motivation 

Enterprise modelling is used to represent the “structure, activities, processes, information, resources, 
people, behavior, goals” as well as “constraints” of an enterprise (Fox and Gruninger, 1998, p. 109). 
In this respect, process modelling has increasingly gained attention in recent years (Becker et al., 2010; 
Harmon, 2016). Process models are not only used for process analysis and improvement efforts, they 
also support the design of information systems (IS) and decision-making concerning information tech-
nology (IT) investments (Becker et al., 2010). However, creating process models is a highly subjective 
task (Pinggera et al., 2015). Accordingly, different quality perspectives and various approaches for de-
signing and evaluating conceptual models are proposed in literature (cf. Mendling et al., 2010; Pinggera 
et al., 2015; Overhage et al., 2012). In this context, “process model understandability” has been estab-
lished as a widely-accepted quality criterion (Fettke et al., 2012) referring to “the degree to which in-
formation contained in a process model can be easily understood by a reader of that model” (Reijers 
and Mendling, 2011, p. 451). While there are different factors influencing the understandability of pro-
cess models (e.g., modeling expertise) (cf. Mendling et al., 2012), it has been shown that the model size 
plays a decisive role (cf. Mendling et al., 2007). In this regard, decomposition is a means of reducing 
model complexity by splitting large process models into smaller subprocess models (Milani et al., 2016; 
Zugal et al., 2015). Though the benefits of decomposing business process models are commonly ac-
cepted, decomposition is often done in an “ad hoc fashion” (Reijers et al., 2011, p. 882) since generally 
acknowledged guidelines to do so are missing (Milani et al., 2016; Reijers and Mendling, 2011; Burton-
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Jones and Meso, 2008). Thus, there is uncertainty regarding those properties that characterize a good 
decomposition in process modelling. Considering this, the good decomposition model of Wand and 
Weber (cf. Weber, 1997) is promising for guiding modellers in decomposing process models purpose-
fully, leading to an easier understanding of the decompositions of process models (Recker et al., 2009). 
In previous research, we specified the conditions of the decomposition model for modelling with Event-
driven Process Chains (EPCs) and derived guidelines for a good decomposition (cf. Johannsen and Leist, 
2012). However, checking the conformance of a decomposed model with the decomposition conditions 
requires a tremendous cognitive effort, if done manually.  

Against this background, a formal operationalization of Wand and Weber’s decomposition conditions 
in the form of metrics is beneficial for the following reasons. First, metrics provide a precise explanation 
of decomposition with regard to the good decomposition conditions and therefore support to judge ob-
jectively as to how a decomposed process model adheres to these conditions. In consequence, they di-
minish the subjectivity of user assessments. Second, we develop a software tool to perform the calcula-
tion automatically. To do so, the metrics’ variables are mapped to corresponding algorithms and proce-
dures executing the evaluation of the process model. This paper describes the development of metrics 
that measure the coherence of a decomposed process model with Wand and Weber’s decomposition 
conditions. The ontological expressiveness of modelling languages differs (Recker, 2011), which, in 
consequence, impacts the interpretation of the decomposition conditions for modelling techniques. To 
provide the necessary level of detail nonetheless, we restrict our research to EPCs and we pose the 
following research question (RQ): Which metrics can be derived to measure the coherence of a decom-
posed EPC process model with Wand and Weber’s decomposition conditions?  

The contribution of our work is the following: first, we operationalize the decomposition conditions as 
a set of formal metrics, establishing an objective base for assessing the quality of a decomposition re-
garding the decomposition model. The metrics resort to the conditions of Wand and Weber to unveil 
properties of well-performed decompositions that have not been identified for the process modelling 
discipline so far. Therefore, our research strongly contributes to the ongoing discussion of how to de-
compose properly (cf. Milani et al., 2016) and provides means to assess the quality of decompositions 
by using metrics. Our paper is structured as follows: the following section describes theoretical founda-
tions on Event-driven Process Chains, gives an overview of related work, and introduces the decompo-
sition conditions for EPCs. Then, the research procedure is described and the metrics are presented and 
applied to a use case before the results are discussed. The paper is rounded off with a conclusion and an 
outlook on future research.  

2 Basics and Related Work 

2.1 Event-driven Process Chains and the good decomposition model  

Event-driven Process Chains (EPCs) were developed in the early 1990s and are currently one of the 
most frequently used techniques for business process modelling (Harmon and Wolf, 2011; Mendling, 
2008). A flat EPC model comprises nodes and arcs; a node can be a function type, an event type, a 
connector type or a process interface (Mendling, 2008). The EPC can be enhanced by several views 
(e.g., organizational view, data view) providing additional information for the user (Scheer et al., 2005). 
In this case, we speak of enhanced Event-driven Process Chains (eEPCs).  

The “understandability” of eEPC models and process models in general is a much discussed topic (e.g., 
Fettke et al., 2012; Mendling et al., 2010; Zugal et al., 2011). Thereby, decomposition is a means to 
reduce the complexity of large process models and thus to increase their understandability (Reijers and 
Mendling, 2011; Zugal et al., 2015). The decomposition itself can be accomplished in two ways: model 
abstraction and model fragmentation (cf. Zugal et al., 2015; De Lara et al., 2013). During model ab-
straction, a modeller aggregates information by designing an abstract process model whereas model 
fragmentation means to spread detailed information across several subprocess models (cf. Zugal et al., 
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2015; De Lara et al., 2013). Thus, a modeller may either create a high-level process model and subse-
quently add information via subprocess models (model fragmentation) or design a detailed “flat” model 
from scratch and then delineate subprocess models by abstracting from the details (model abstraction) 
(Davis and Brabänder, 2007). A variety of suggestions on how to do the decomposition are found in 
literature (e.g., Milani et al., 2016). Van der Aalst (2013) for example investigates the decomposition of 
Petri nets in special, whereas Ma et al. (2015) propose an algorithm for an automatic decomposition of 
process models. So-called “single-entry-single-exit” (SESE) components of a process model are 
searched for in the “block structuring” approach as these are potential candidates for subprocess models 
(Reijers et al., 2011). Vanhatalo et al. (2009) cluster business processes according to “fragments” that 
have two boundary nodes and should be objective in addition, i.e. the fragments do not overlap. Based 
on that, the refined process structure tree can be deduced with the fragments representing potential sub-
processes (cf. Vanhatalo et al., 2009). Another approach, which analyses the connections between 
“nodes” of a process model, is called “graph-clustering” (cf. Reijers et al., 2011). Accordingly, nodes 
that are strongly connected with each other should be captured within a subprocess model (cf. Reijers 
et al., 2011). Milani et al. (2016) analyse various decomposition approaches in a controlled experiment, 
highlighting that existing heuristics (e.g., role based heuristics) do not provide sufficient criteria for 
decomposition or do not necessarily support the delineation of subprocess models. More, generally ac-
cepted metrics that focus on the quality of decomposed process models in special can hardly be found 
(cf. Reijers et al., 2011; Vanderfeesten et al., 2007). Metrics could be developed regarding specific de-
composition approaches as described above (e.g., block structuring). An example would be the number 
of “SESE-components” (Gerth, 2013) across all subprocess models of a decomposition. Though, such 
metrics would not be independent of a certain decomposition approach, which decreases their general 
applicability. In general, as Reijers et al. (2011) summarize, there is still the need to develop metrics 
enabling the objective evaluation of alternative designs of a decomposed business process model. 

In this ongoing discourse, we build on the good decomposition model of Wand and Weber (cf. Weber, 
1997; Wand and Weber, 1989) to guide users in decomposing process models and to judge the under-
standability of decomposed models. The good decomposition model originates in the IS discipline and 
is part of the BWW ontology (Weber, 1997). Burton-Jones and Meso (2006) show that adhering to the 
decomposition conditions positively affects the understandability of conceptual models in object-ori-
ented modelling. The potential benefits of the decomposition model to come to a manageable set of 
subprocess models in large modelling projects were initially proposed by Recker et al. (2009). Burton-
Jones and Meso (2006) show that adhering to the decomposition conditions positively affects the un-
derstandability of conceptual models in object-oriented modelling. In general, the decomposition model 
is attested a wide applicability and a comprehensive scope (Recker et al., 2005). In previous works, we 
transferred the decomposition conditions to business process modelling and specified them for eEPC 
models in particular (cf. Johannsen and Leist, 2012). We also show that the perceived understandability 
of eEPC models strongly profits from the decomposition model (cf. Johannsen et al., 2014). Because of 
that, the decomposition model is promising as a step towards developing a theory for explaining the 
quality of decomposed process models. What is missing is a formal specification of the decomposition 
conditions in the form of metrics. Adequate metrics precisely capture the constructs of the decomposi-
tion conditions as variables and thus facilitate an objective judgement as to which extent a decomposed 
process model adheres to the decomposition conditions.  

2.2 The good decomposition model of Wand and Weber for eEPC modelling 

The decomposition model builds on the representational model of the Bunge-Wand-Weber (BWW) on-
tology, which defines fundamental constructs and constituting components of an IS (Weber, 1997). The 
key construct of the BWW ontology is the “thing” (e.g., human, IT-system), which has certain properties 
(e.g., eye color) that are expressed via attributes (Weber, 1997; Rosemann and Green, 2002). Things can 
be grouped into systems and subsystems (Weber, 1997). Weber (1997) gives a detailed description of 
the BWW ontology, for example. To determine the quality of a decomposed IS, the decomposition 
model proposes five conditions (Weber, 1997): (1) minimality, (2) determinism, (3) losslessness, (4) 
minimum coupling, and (5) strong cohesion. These conditions are described in Table 1.  
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However, due to its origin in IS, the terms and concepts used by the decomposition model differ from 
basic notions of process modelling with eEPCs. First, a system is defined as a set of “things” by Weber 
(1997) with no equivalent counterpart existing for eEPC process models (cf. Green and Rosemann, 
2001). We therefore interpret a self-contained business process with a clearly defined starting and ending 
point that is visualized as a corresponding eEPC model as a “system”. Second, we use data object types 
representing business relevant objects (e.g., data, application types, etc.) in eEPC models (cf. Scheer et 
al., 2005) as representatives of “things” in the sense of Weber (1997). Generally, data object types in an 
eEPC model are not a one-to-one equivalent for “things” of the BWW ontology but they are the most 
suitable construct for representing “things” in eEPC modelling. Third, a fundamental difference regard-
ing the term “event” exists for the BWW ontology and eEPCs. Considering the BWW model, an event 
describes an ordered pair that comprises the initial state and the subsequent state arising for a “thing” 
due to a transformation (Weber, 1997). Contrary, in process modelling with eEPCs, an event represents 
an instance of an event type in an eEPC process model. In that context, an event indicates the current 
state of a process instance during execution (e.g., the order “is delivered” in an instance of the process 
“management of customer orders”) (Keller et al., 1992). However, as eEPCs consider the type level, 
only event types are explicated in a process model. Therefore, two essentially different conceptions are 
allotted the identical homonym “event”, a fact that needs to be considered when interpreting the decom-
position conditions. In this regard, an “event” in the BWW model can be expressed with the help of the 
triple “event type  function type  event type” in eEPCs, whereas the function type represents a 
transformation (Green and Rosemann, 2000). Consequently, in accordance with the type level of process 
models, we refer to event types when specifying metrics for the decomposition conditions.  

Minimality con-
dition 

“A decomposition is good only if for every subsystem at every level in the level structure of the system there are no 
redundant state variables describing the subsystem.” (Weber, 1997, p. 153) 

Determinism 
condition 

“For a given set of external (input) events at the system level, a decomposition is good only if for every subsystem at 
every level in the level structure of the system an event is either (a) an external event, or (b) a well-defined internal 
event.” (Weber, 1997, p. 154) 

Losslessness 
condition 

“A decomposition is good only if every hereditary state variable and every emergent state variable in a system is pre-
served in the decomposition.” (Weber, 1997, p. 155) 

Minimum cou-
pling condition 

“A decomposition has minimum coupling iff the cardinality of the totality of input for each subsystem of the decom-
position is less than or equal to the cardinality of the totality of input for each equivalent subsystem in the equivalent 
decomposition.” (Weber, 1997, p. 161) 

Strong cohesion 
condition 

“A set of outputs is maximally cohesive if all output variables affected by input variables are contained in the same set, 
and the addition of any other output to the set does not extend the set of inputs on which the existing outputs depend 
and there is no other output which depends on any of the input set defined by the existing output set.” (Dromey, 1996, 
p. 42; Weber, 1997, p. 163) 

Table 1. The decomposition conditions 

In the following, we shortly introduce a specification of these conditions for eEPCs (see Table 2). A 
more comprising and embracing description of the conditions based on a representational mapping (cf. 
Green and Rosemann, 2000) can be found in a previous work (cf. Johannsen and Leist, 2012).  

Minimality: A process model can be decomposed into subprocess models. The arrangement of the sub-
process models forms a “level structure” (Reijers and Mendling, 2011). Attributes of eEPC data object 
types express the “state variables” (Weber, 1997). Event types of an eEPC model show the states for 
these attributes. Event types in an eEPC model are “not redundant” in case they express a state for a 
particular attribute (state variable) that changes its value during process execution (Hoffmann et al., 
1993).  

Determinism: Since Weber (1997) demands “internal events” to be well-defined, a modeller should 
avoid using modelling constructs like OR connectors or an ambiguous labelling of the modelling con-
structs, which lead to changes in state that are not well-defined (cf. Mendling et al., 2010; van der Aalst 
et al., 2002). Further, considering “external events” – as event types – is an important task for depicting 
well-defined process models and fulfilling the determinism condition.  

Losslessness: The eEPC does not offer representation mechanisms for emergent and hereditary proper-
ties (Green and Rosemann, 2000; Recker et al., 2009). Nevertheless, Weber (1997) generalizes the con-
dition by demanding not to lose properties at all. Properties are represented by attributes of data object 
types in a data model and can be related to event types in eEPCs accordingly. Thus, all “non-redundant” 
event types that are required for visualizing a real world situation must be captured in an eEPC model.  



Johannsen et al. /Metrics for Decomposed Process Models 

Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth,UK, 2018 

 

Minimum coupling: In terms of “coupling”, the coupling concept of Vanderfeesten et al. (2008) aligns 
very well with the primary ideas of Wand and Weber. Hence, two subprocess models are “coupled” if 
the output of a function type in a subprocess model – represented as a data object type – is at the same 
time input to a function type in another subprocess. Therefore, the interchange of data object types be-
tween subprocess models should be minimal. More, to minimize the “total action of all environmental 
things on each subsystem in the decomposition” (Weber, 1997, p. 159), the number of event types (e.g., 
start event types) used for expressing external events is to be minimized.  

Strong cohesion: An interpretation of cohesion for process modelling was conducted by Vanderfeesten 
et al. (2008) which reverts to data object types for representing “output” (in the sense of Weber (1997)). 
Hence, all function types transforming input to output – expressed as data object types – are to be visu-
alized within a subprocess model. Accordingly, data object types representing “input” in a subprocess 
model to produce particular output cannot be found in another subprocess model on that model level.  

Minimality regard-
ing eEPCs 

The decomposed eEPC process model should not hold any event types that are “redundant” and thus indicate 
“states” that never occur during process execution. Event types used for representing states of state variables (at-
tributes) on a type level that are not needed for the continuation of a process on an instance level are to be avoided. 
Function types and modelling constructs from other ARIS views (e.g., of the organizational view, data view, output 
view) related to these must be reflected as to their necessity regarding this fact as well. 

Determinism regard-
ing eEPCs 

To fulfil the determinism condition, the decomposed business process model has no OR connectors, while subpro-
cesses are built around external events. Rules for decision nodes have to be established and the event types have to 
be labelled appropriately. 

Losslessness regard-
ing eEPCs 

No information must get lost during decomposition. Event types related to attributes describing properties are of 
central importance and should be preserved.  

Minimum coupling 
regarding eEPCs 

Each subprocess of a process must have less input data object types and external event types than in any other 
comparable decomposition of the same process. 

Strong cohesion re-
garding eEPCs 

All function types transforming a set of input to output (data object types) are captured within a subprocess. Each 
input within this subprocess cannot be found in any other subprocess at the same model level and produce other 
output. 

Table 2. The decomposition conditions specified for eEPCs (Johannsen and Leist, 2012) 

3 Metrics for the Decomposition Conditions 

3.1 Procedure of the research 

Our research follows the “Goal Question Metric (GQM) approach” for the systematic development of 
metrics by Basili et al. (1994). The GQM approach draws upon the idea that measurements in an entre-
preneurial context require a thoroughly defined goal, which is then operationalized by relevant enter-
prise data, which are then interpreted regarding the goal (Basili et al., 1994). Especially for our research, 
the GQM approach is well qualified since it assures a very systematic research procedure in which re-
producible results are achieved. We state our goal as the development of means to judge the quality of 
a decomposed process model. In that context, we refer to Wand and Weber’s decomposition model as 
an approach for obtaining decompositions that are of high quality. In our study, the five decomposition 
conditions provide the questions of the GQM approach. We thus ask: To what degree does a decomposed 
process model adhere to the (I) minimality, (II) determinism, (III) losslessness, (IV) minimum coupling 
and (V) strong cohesion condition? To answer these questions, we derive metrics that help to evaluate 
the coherence of a decomposed eEPC process model in view of the decomposition conditions. To spec-
ify metrics, we follow a three-step approach that builds on the interpretation of the decomposition con-
ditions for eEPC modelling (see Table 2). In a first step (step 1), we identify the central constructs of 
the decomposition conditions, which have been specified for eEPCs. Afterwards (step 2), we derive the 
corresponding variables for a metric. These variables are then arranged in the form of metrics that cap-
ture the initial idea of the decomposition conditions and allow to objectively judge to which extent a 
decomposed model adheres to these conditions (step 3).  

In the remainder of this chapter, we show the derivation of metrics for the “minimum coupling condi-
tion” for demonstration purposes. Then, considering the page restrictions, we briefly summarize the 
metrics for the other conditions, which, however, have been deduced in the same manner. To shorten 
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the notation of the metrics, Si refers to a subprocess model and |S| to the set of subprocess models. 
Likewise, Mj refers to a level of the decomposition and |M| to the set of levels in a decomposition. 

3.2 Metrics to assess minimum coupling 

Step 1: The specification of minimum coupling for eEPCs (see Table 2) puts a major emphasis on 
external event types and input data object types to determine the coupling degree. Because of that, a 
corresponding metric has to capture both these concepts. Coupling is given if a data object type is shared 
by a function type 1 in S1 and a function type 2 in S2 that are allocated to the same model level. The 
construct “(function type 1; function type 2)” is called a “coupled pair of function types” in the follow-
ing. Thus, a “coupled pair of function types” consists of the function type producing the data object type 
as output and the function type receiving this data object type as input. Further, external event types are 
an important aspect to be considered for determining the environmental impact on a subprocess.  

Step 2: The variables derived from these central constructs to develop corresponding metrics are “cou-
pled pair of function types” and “external event type”. For normalization purposes, the number of po-
tential “pairs of coupled function types” is part of a corresponding metric, too. It expresses all possible 
constellations of coupling between function types. Further, the subprocess models (Si) and model levels 
(Mj) of a level structure are required to focus either single model levels or the holistic decomposition. 
Take Figure 1 as an example, which shows the two subprocess models “complaint receipt – S1” and 
“complaint handling – S2”. We assume that both these models are assigned to the same model level (Mj) 
of a decomposition. S1 has two output data object types, namely the “confirmation of receipt” and the 
“complaint”. The complaint is also an input data object type in S2 for the function type “analyse com-
plaint reason”. Further, the output data object type “customer letter” is given. Accordingly, one “coupled 
pair of function types”, namely “(transmit complaint to employee responsible; analyse complaint rea-
son)”, exists. The variable “coupled pair of function types” takes into account these pairs of function 
types. Further, each subprocess model has an external event type, represented as start event types.  

Step 3: In total, we propose four metrics for measuring the degree as to which a decomposition coheres 
to the minimum coupling condition. To reduce complexity, both concepts that determine the environ-
mental impact on an eEPC subprocess model – namely the “coupling” between function types and the 
number of external event types – are dealt with by separate metrics. In this respect, it needs to be 
acknowledged that certain users may consider subprocess models on a specific level exclusively (e.g., 
operating staff focusing on M0, developers focusing on M1) to find the information sought after (cf. 
Bobrik et al., 2007). For instance, for deriving functional requirements on an IS, which are documented 
in the rough concept, a general perspective on a business process and its activities is taken, whereas in 
the fine concept a more detailed perspective on the tasks constituting an activity is aspired. In this re-
spect, it is important that the requirements of the decomposition conditions are not only diligently fol-
lowed regarding the holistic decomposition but also regarding selected model levels, a circumstance to 
be taken into account during the metric definition. The first metric (metric 1 – Table 3) addresses cou-
pling between function types and focuses on a certain model level of a level structure only. To measure 
the degree of coupling, the “coupled pairs of function types” between subprocess models are to be 
counted for that model level. The result is divided by the total number of “potential pairs of coupled 
function types”. Since modelling is a subjective task, modellers might not explicate all data object types 
in their models and, hence, all function types are used for calculating the potential pairs of coupled 
function types. To calculate the “potential pairs of coupled function types” consider that the “potential 
coupling” between function types can be directed in both directions. Reverting to Figure 1, we acknowl-
edged one pair of coupled function types. This number is divided by the total number of potential cou-
pled pairs of function types. Therefore, for each function type in a subprocess model, one builds a couple 
with each of the function types originating from different subprocess models on the model level under 
consideration. In Figure 1, S1 and S2 comprise three function types each. Thus, 2*(3*3) “potential pairs 
of coupled function types” regarding S1 and S2 can be built, amounting to a total of 18 “potential pairs 
of coupled function types”. The value for metric 1 regarding Figure 1 is thus “0.056 (=1/18)”.  
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Figure 1. Example for the minimum coupling condition 

All values calculated for the model levels of a decomposition via metric 1 can then be aggregated across 
all model levels to come to an overall value for the decomposed model as shown by metric 2 in Table 
3. The other aspect of minimum coupling refers to event types indicating external events. According to 
Green and Rosemann (2000), start event types are typically used for representing external events in an 
eEPC model. Thus, first, the number of start event types should be minimal to reduce the total impact 
of the environment on a subprocess (cf. Weber, 1997).  
Ratio of “coupled pairs of function types” across subprocess models on a model level – metric 1 (minimum coupling) 

௝൯ܯ൫	1	ܿ݅ݎݐ݁ܯ ൌ
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ݎܾ݁݉ݑ݊ ݂݋ ݈ܽ݅ݐ݊݁ݐ݋݌ ݏݎ݅ܽ݌ ݂݋ ݈݀݁݌ݑ݋ܿ ݊݋݅ݐܿ݊ݑ݂ ௝ܯ	݈݁ݒ݈݁	݈݁݀݋݉	ܽ	݊݋	ݏ݁݌ݕݐ
 

Calculation & Interpretation – metric 1 
This metric counts the number of “coupled pairs of function types” across all subprocess models of a model level Mj and divides this number by 
the total number of “potential pairs of coupled function types” on that model level. The metric value represents the ratio of coupled pairs of 
function types in regards to all possible constellations of coupling between function types for a certain model level (Mj). 
Average ratio of “coupled pairs of function types” for a model level – metric 2 (minimum coupling)

2	ܿ݅ݎݐ݁ܯ ൌ
∑

ݏݎ݅ܽ݌	݈݀݁݌ݑ݋ܿ	݂݋	ݎ݁݉ݑ݊ ݂݋ ݊݋݅ݐܿ݊ݑ݂ ݏ݁݌ݕݐ ݏݏ݋ݎܿܽ ݈݈ܽ ݏݏ݁ܿ݋ݎ݌ܾݑݏ ݈݁ݒ݈݁	݈݁݀݋݉	ܽ	݊݋	ݏ݈݁݀݋݉ ௝ܯ

ݎܾ݁݉ݑ݊ ݂݋ ݈ܽ݅ݐ݊݁ݐ݋݌ ݏݎ݅ܽ݌ ݂݋ ݈݀݁݌ݑ݋ܿ ݊݋݅ݐܿ݊ݑ݂ ݏ݁݌ݕݐ
|ெ|
௝ୀ଴

|ܯ|
 

Calculation & Interpretation – metric 2 
Metric 2 aggregates the values received by applying metric 1 across all model levels Mj and divides the resulting sum by the total number of 
model levels |M|. The metric value shows the average ratio of coupled pairs of function types in regards to all possible constellations of coupling 
between function types for model levels across all model levels of a decomposition. 
Average number of external event types for subprocess models on a model level – metric 3 (minimum coupling) 

௝ሻܯሺ	3	ܿ݅ݎݐ݁ܯ ൌ
∑ ݎܾ݁݉ݑ݊ ݂݋ ݈ܽ݊ݎ݁ݐݔ݁ ݐ݊݁ݒ݁ ݏ݁݌ݕݐ ݂݋ ݏݏ݁ܿ݋ݎ݌ܾݑݏ 	݈݁݀݋݉ ௜ܵ
|ௌ|
௜ୀଵ

|ܵ|
 

Calculation & Interpretation – metric 3 
This metric counts the number of external event types across all subprocesses Si of a model level Mj and divides this number by the total number 
of subprocesses |S| on that model level. The metric answers the question of how many external event types subprocess models on a model level 
Mj have in average.  
Average number of external event types for subprocess models of the decomposition – metric 4 (minimum coupling) 
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Calculation & Interpretation – metric 4 
Metric 4 aggregates the values received by applying metric 3 across all model levels and divides the resulting sum by the total number of model 
levels |M|. The resulting value indicates the average number of external event types of subprocess models – in regards to a model level – across 
all model levels of the decomposition. 

Table 3. Proposed metrics to assess minimum coupling 

Further, the user needs to consider whether further external events impact a process and are considered 
as intermediate event types in the model (cf. Scheer et al., 2005). The total number of external event 
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types is counted and divided by the number of subprocess models of that model level, which is done by 
metric 3 (Table 3). For example, there are two start event types in Figure 1 and no further external event 
types. This number is divided by the amount of subprocess models, which results in a metric value of 
“1”. Therefore, in Figure 1, the external input is minimal. To obtain a value for the holistic decomposi-
tion, the values for metric 3 are aggregated for all model levels and then divided by the total number of 
all model levels existing, a procedure captured by metric 4 (Table 3). Both the metrics 3 and 4 result in 
values of “1” or higher, while “1” represents a perfect decomposition in that context. The normalization 
across subprocess models on a model level is performed for assuring the results to be interpretable and 
comparable (Heinrich et al., 2007), which has been posed as a central requirement on metrics in the IS 
domain (cf. Hinrichs, 2002). Hence, since particular users may focus on certain subprocess models only 
to retrieve the information sought after – which is a principle idea behind process model decomposition 
(e.g., Zugal et al., 2015) – an average value for subprocess models is strived for (see metric 3 or denom-
inator of metric 4). As an example, when specifying the fine concept in the course of IS development, 
certain employees may focus on those subprocess models exclusively that visualize the working proce-
dures performed by themselves. 

In summary, minimum coupling is determined based on “coupled pairs of function types” and “external 
event types”. For both, corresponding metrics were introduced. Since the aspect of coupled function 
types focuses on structural aspects of a decomposition, no domain knowledge is required for calculating 
metrics 1 and 2. This enables an automatized assessment of the coherence of a model to the minimum 
coupling definition. However, domain knowledge is required for determining external event types. To 
reduce the coupling degree – and thus the number of coupled pairs of function types as well as external 
event types –, a modeller can merge subprocess models. However, completely reducing the interaction 
between subprocess models may not be appropriate under all circumstances as, e.g., the modeller might 
come up with one, merged, process model only, which counteracts the intention of decomposition.  

3.3 Mimimality, determinism, losslessness and strong cohesion 

The following Tables 4 and 5 summarize the metrics proposed for the remaining conditions. The metrics 
have been derived following the procedure shown in section 3.1. In summary, we propose two metrics 
(5 and 6) to determine “minimality”. Both metrics direct the attention to redundant event types that need 
to be identified in a model. A redundant event type refers to an attribute that never changes its value 
during process execution and, hence, such an event type is never reached (cf. Scheer et al., 2005; Weber, 
1997). The ideal value for both metrics is “0”. That way, the initial idea of Weber (1997) to avoid 
unnecessary state variables is perfectly preserved, even though the challenge of applying the metrics lies 
in finding redundant event types of an eEPC model. The first two metrics developed to assess “deter-
minism” (metrics 7 and 8) focus on the requirement that internal events of a decomposition need to be 
well-defined (cf. Weber, 1997). Thus, OR split operations in the subprocess models are in the centre of 
attention. These can be identified quite simply without requiring domain knowledge of the real world 
situation modelled. The consideration of external events can be challenging (cf. Weber, 1997), which 
requires the user to have profound knowledge of a process and its environment to apply metric 9. An 
external event type represents a state that occurs due to actions of environmental components, e.g., cus-
tomers or partners (Weber, 1997). All metrics have a value of “0” in an ideal decomposition. 

For assessing “losslessness” via metric 10, domain knowledge is required for identifying “missing non-
redundant event types”. Accordingly, the calculation of the metric cannot be automatized as the seman-
tics of the process model must be reflected against the real world. However, the manual calculation of 
the metric’s value provides valuable insights as to what degree a process model coheres to Wand and 
Weber’s idea of losslessness. Again, ideally, the application of the metric results in a value of “0”.  

Finally, we propose two metrics for determining “strong cohesion” (metrics 11 and 12 – Table 5). Both 
metrics focus on structural aspects of a decomposition and analyse the delineation of subprocess models 
more closely. The semantics of the process model is not investigated. Thus, the calculation of the metric 
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can be automatized, as no domain knowledge is required. Similarly to minimum coupling, the calcula-
tion requires to count the data object types across the subprocess models. The metric values are “0” in 
the case of a perfect decomposition in regards to “strong cohesion”.  
Average ratio of “redundant” event types for subprocess models on a specific model level – metric 5 (minimality) 

௝൯ܯ൫	5	ܿ݅ݎݐ݁ܯ ൌ
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ݎܾ݁݉ݑ݊ ݂݋ ݐ݊݁ݒ݁ ݏ݁݌ݕݐ ݅݊ ݏݏ݁ܿ݋ݎ݌ܾݑݏ 	݈݁݀݋݉ ௜ܵ

|ௌ|
௜ୀଵ

ݎܾ݁݉ݑ݊ ݂݋ ݏݏ݁ܿ݋ݎ݌ܾݑݏ ݏ݈݁݀݋݉ |ܵ| ݊݋ ݈݁݀݋݉ ݈݁ݒ݈݁ ௝ܯ ݀݁ݎ݁݀݅ݏ݊݋ܿ
 

Calculation & Interpretation – metric 5 
This metric counts the “redundant event types” of a subprocess model Si on a model level Mj. This number is divided by the total number of event 
types of that subprocess model Si. This is done for all subprocess models of the model level Mj, and the partial results are aggregated. The resulting 
number is divided by the total number of subprocess models |S| on that model level to obtain an average ratio for the subprocess models and thus 
to increase comparability. Hence, two count variables i and j are used with i addressing the subprocess models (for example S1, S2, etc.) and j 
addressing the model levels (for example M0, M1, etc.). The final result represents the average ratio of redundant event types for subprocess models 
on a model level Mj. 
Average ratio of “redundant” event types for subprocess models across all model levels of a decomposition – metric 6 (minimality)
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ݎܾ݁݉ݑ݊ ݂݋ ݐ݊݁ݒ݁ ݏ݁݌ݕݐ ݅݊ ݏݏ݁ܿ݋ݎ݌ܾݑݏ 	݈݁݀݋݉ ௜ܵ
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Calculation & Interpretation – metric 6 
In summary, the value for metric 6 is received by applying metric 5 to all model levels of a decomposition (e.g. M0, M1, etc.). The resulting values 
are summed up and the result is divided by the total number of model levels |M| of a decomposed process model. The value shows the average 
ratio of redundant event types (regarding all event types modelled) for subprocess models of a model level across a decomposition.
Average ratio of OR splits of subprocess models on a specific model level – metric 7 (determinism)
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Calculation & Interpretation – metric 7 
This metric counts the number of OR splits of a subprocess model Si on a model level Mj. This number is divided by the total number of split 
operations (XOR, OR, AND) of that subprocess model. This is done for all subprocess models of that model level and the partial results are 
aggregated. The result is divided by the number of subprocess models on that level to achieve an average ratio. The value represents the average 
ratio of OR splits in regards to all split operations for subprocess models on a model level Mj.
Average ratio of OR splits of subprocess models across all model levels of a decomposition – metric 8 (determinism) 
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Calculation & Interpretation – metric 8 
The average ratio of OR splits of the subprocess models on a specific model level is calculated for all model levels and the values are summed up. 
The result is divided by the total number of model levels of a decomposed process model. The metric value represents the average ratio of OR 
split operations in regards to all split operations for subprocess models of a model level across all model levels of a decomposition. 
Ratio of missing “external event types” of a decomposition – metric 9 (determinism)
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Calculation & Interpretation – metric 9 
Metric 9 counts the number of “missing external event types” for a subprocess model and divides this number by the sum of “missing external 
event types” and explicitly modelled “external event types”. Missing event types are those that are “not redundant”, however, have not been 
considered by the modeller. The values are summed up for all subprocess models across the decomposition and the result is divided by the total 
number of subprocess models that can be found in the decomposition. The metric value represents the average number of missing external event 
types in regards to all external events that should have been captured by a decomposed process model. Note that the average value considers all 
subprocess models across all model levels without differentiating between model levels. 

Table 4. Proposed metrics to assess minimality and determinism 

Following the GQM approach, twelve metrics were defined for measuring the coherence of a decom-
posed business process model with the decomposition conditions. Most decomposition conditions allow 
to consider a decomposed model as a whole (metrics 2, 4, 6, 8, 9, 10, 12), facilitating the comparison of 
alternative decompositions, but also enabling the analysis of model levels separately (metrics 1, 3, 5, 7, 
11). Further examples for the metrics’ application can be found at: https://tinyurl.com/ybyjp2ky. 

Ratio of missing “non-redundant event types” of a decomposition – metric 10 (losslessness)
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Calculation & Interpretation – metric 10 
This metric counts the number of “missing non-redundant event types” for a subprocess model and divides this number by the sum of missing “non-
redundant event types” and explicitly modelled event types. This is done for all subprocess models of a decomposition. The values are summed up 
and the result is divided by the total number of subprocess models that can be found in the decomposition (across all model levels). The value shows 
the average ratio of “missing non-redundant event types” to the sum of “missing non-redundant event types” plus all event types explicitly modelled 
for subprocess models of a decomposition. Note that the average value considers all subprocess models across all model levels without differentiating 
between model levels. 

Ratio of “duos of function types” sharing a common input data object type across subprocess models on a model level – metric 11 (str. coh.)
௝ሻܯሺ	11	ܿ݅ݎݐ݁ܯ

ൌ
ݏ݁݌ݕݐ	݊݋݅ݐܿ݊ݑ݂	݂݋	ݏ݋ݑ݀	݂݋	ݎܾ݁݉ݑ݊ ܽݐܽ݀	ݐݑ݌݊݅	݊݋݉݉݋ܿ	ܽ	݃݊݅ݎ݄ܽݏ ݐ݆ܾܿ݁݋ ݁݌ݕݐ ݐݑܾ ݁ݒ݄ܽ ݐ݊݁ݎ݂݂݁݅݀ ݐݑ݌ݐݑ݋ ܽݐܽ݀ ݐ݆ܾܿ݁݋ ݏ݁݌ݕݐ ݊݋	ݏ݈݁݀݋݉	ݏݏ݁ܿ݋ݎ݌ܾݑݏ	݈݈ܽ	ݏݏ݋ݎܿܽ ܽ ݈݁݀݋݉ ݈݁ݒ݈݁ ௝ܯ

ݎܾ݁݉ݑ݊ ݂݋ ݈ܽ݅ݐ݊݁ݐ݋݌ ݏ݋ݑ݀ ݂݋ ݊݋݅ݐܿ݊ݑ݂ ݏ݁݌ݕݐ ݊݋ ܽ ݈݁݀݋݉ ݈݁ݒ݈݁ ௝ܯ
 

Calculation & Interpretation – metric 11 
This metric counts the number of duos of function types that share a common data object type as input (so called “duos of function types”) but have 
different output object types across all subprocess models Si of a model level Mj and divides this number by the total number of “potential” duos of 
function types on that model level. The metric shows the ratio of function types that have different output object types but share a common data input 
type in regards to all possible constellations of function types on a specific model level Mj. 
Average ratio of “duos of function types” sharing a common input data object type for a model level – metric 12 (strong cohesion) 
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Calculation & Interpretation – metric 12 
The ratio of the “duos of function types” across subprocess models on a model level is calculated for all model levels, the partial results are aggregated 
and the result is divided by the total number of model levels. The value stands for the average ratio of function types that have different output data 
object types but share a common data input type in regards to all possible constellations of function types (taking the model level as a calculation base) 
across all model levels. 

Table 5. Proposed metrics to assess losslessness and strong cohesion 

4 Application of the Metrics & Prototypical Implementation 

Prior to specifying the metrics, we evaluated the decomposition conditions for eEPCs in an experimental 
setting to judge their impact on process model understandability (cf. Johannsen et al., 2014). The results 
showed that decomposed process models are more understandable if the decomposition abides the con-
ditions. Further, abiding the conditions strongly increased the perceived ease of understanding. An over-
view of the material and the decomposed process model with detailed explanations is available at: 
https://tinyurl.com/ybpj3hv5. In that context, three alternative decompositions “A”, “B”, and “C” of a 
process model depicting the “student enrolment process” at a German university, which violated the 
conditions to varying degrees, were created. Each decomposition comprised four model levels (M0 to 
M3). Alternative “A” complied with the conditions as far as possible. Alternative “B” violated the min-
imality and losslessness conditions, which focus the semantics of a process and less its structure. Alter-
native C violated all the decomposition conditions to the same degree. In a previously conducted exper-
iment, we found that models complying with the decomposition conditions are perceived as significantly 
easier to understand by users (cf. Johannsen et al., 2014). For this work, we reuse the process models 
and apply the newly developed metrics to see whether they indicate a difference as well (see Table 6).  
Almost all of the metrics applied to alternative “A” result in ideal values for these particular measures. 
However, some results emerge from applying the metrics that seem counterintuitive at first sight. They 
are highlighted by the colorations in Table 6 and further explained in the following. First, the results for 
metrics 3 and 4 need explaining. Both metrics focus external event types of eEPC subprocess models. 
To minimize the external influence on a system as demanded by Weber (1997), each subprocess model 
should – ideally – only have one start event type initially. However, the subprocess models in alternative 
“A” have more than one start event type on average. That particular circumstance is also reflected by 
the values for the metrics 3 and 4, which are quite similar for the model alternatives “A”, “B” and “C”. 
Essentially, it needs to be acknowledged that student enrolment is a complex process, thus requiring the 
modelling of numerous start event types for the subprocess models. Second, the results for metrics 7 
and 8 (determinism) need clarifying. Regarding the application of metric 7, variant “B” performs worse 
than “C” for model levels M1 and M3, although alternative “B” is perceived as easier to understand by 
model users. Thereby, both alternatives, “B” and “C”, have only one OR split operation on M1. However, 
the delineation of subprocess models is different and, thus, alternative “B” comprises two subprocess 
models on M1 whereas there are four subprocess models in alternative “C”. Accordingly, the model user 
focusing on particular subprocess models exclusively to find certain information will less likely come 
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across the subprocess model with the OR connector in alternative “C” compared to alternative “B”. This 
circumstance also affects metric 8, aggregating the values for metric 7 across all model levels.  

Despite these peculiarities, the results of the calculation match with the assumption that decompositions 
with fewer violations of the conditions are not only easier to understand but also perform better regard-
ing the metrics’ values than equivalent decompositions violating the conditions. Hence, the metrics pro-
vide a good indicator as to what degree a decomposition adheres to the decomposition conditions as 
defined allowing to systematically assess its perceived quality. However, it is rather unlikely to perfectly 
adhere to each condition in practice, e.g., due to the complexity of the real world.  

Condition Minimum Coupling Minimality Determinism Losslessness Strong cohesion 
Metric 1 2 3 4 5 6 7 8 9 10 11 12 
Alternative A 
Level 0 (M0) 0 0 3 2.312 0 0 0 0 0 0 0 0 
Level 1 (M1) 0 2 0 0 0 
Level 2 (M2) 0 1.25 0 0 0 
Level 3 (M3) 0 3 0 0 0 
Alternative B 
Level 0 (M0) 0 0 3 2.063 0 0.049 0 0.148 0 0 0 0 
Level 1 (M1) 0 2 0.118 0.083 0 
Level 2 (M2) 0 1.25 0.079 0.177 0 
Level 3 (M3) 0 2 0 0.333 0 
Alternative C 
Level 0 (M0) 0 0.037 3 2.188 0 0.063 0 0.075 0 0 0 0 
Level 1 (M1) 0.012 2.25 0.143 0.063 0 
Level 2 (M2) 0.011 1 0.107 0.236 0 
Level 3 (M3) 0.125 2.5 0 0.25 0 

Table 6. Calculation results 

Many of the metrics presented here require a laborious calculation, which is time-consuming consider-
ing the various model levels and subprocess models that may be created. In most practical settings, 
however, process models are available electronically in tools such as ARIS or MS Visio. Thus, we used 
the formalization of the metrics to implement an automatic calculation to be used by modellers evaluat-
ing a large number of models. The prototype also serves as a proof-of-concept for the metrics (cf. Hevner 
et al., 2004). For the metrics 1, 2, 7, 8, 11 and 12, the implementation was straightforward. First, we 
mapped the variables from the metrics to eEPC modelling elements. Then, we implemented the calcu-
lation procedure as algorithms. For the implementation, we used the ProM process mining and analysis 
framework (http://bit.ly/2pQYNwc). This framework is well known for its analytical capabilities and 
easy extensibility. The implementation expects the models to be available in the EPML-notation (cf. 
Mendling and Nüttgens, 2006), which is an open standard supported by many frequently used modelling 
tools. The source code of our implementation is available at http://bit.ly/2pQNVi3. Currently, there is 
no implementation for a fully automatized calculation of the metrics 3, 4, 5, 6, 9 and 10 as process 
knowledge is required for that purpose. As of now, redundant event types, missing external event types, 
etc. have to be identified by the user via their process knowledge or the advice of experts.  

5 Discussion 

5.1 Reflection 

In this research, the decomposition conditions of Wand and Weber have been transformed into metrics 
to evaluate the quality of decomposed eEPC models. The metrics for the minimality condition focus on 
the event types of eEPC models, which are used as representations for state variables. This interpretation 
is based on the fact that the BWW ontology explicitly focuses the instance level, whereas the eEPC 
works on the type level. Thus, for unambiguously determining redundant event types, a modeller needs 
to reflect on the instances of an eEPC model. Depending on the size of the process model, this may 
require considerable cognitive efforts. However, the instances of a process model clearly show which 
event types are redundant and can thus be deleted on the type level. The metrics for the determinism 
condition suggest to avoid “OR splits” in a process model to ensure that internal events are well-defined 
(cf. Weber, 1997) on the one hand. Taking a structural perspective on process models helps to avoid 
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uncertainty when instantiating an eEPC model. However, in future research, further semantics-based 
metrics are to be developed that consider the labelling of the nodes in a process model as well, because 
inadequate labels might lead to additional ambiguities counteracting the ideas of Weber (1997). On the 
other hand, metric 9 deals with external events as mentioned. As previously said, event types in an eEPC 
model cannot be mapped to events of the BWW ontology in a one-to-one manner. Thus, process 
knowledge is required from the user side to determine whether an eEPC model actually considers all 
relevant event types that point to external events (cf. Weber, 1997).  

The losslessness condition focuses on hereditary and emergent state variables in special, a differentiation 
which does not become obvious in an eEPC model due to ontological deficiencies of the modelling 
notation (cf. Recker et al., 2009). Nevertheless, this circumstance is negligible because our metric builds 
on the requirement to preserve all types of properties during decomposition (cf. Weber, 1997). Hence, 
the primary idea of the decomposition condition was enhanced for eEPC modelling. To operationalize 
the input to or the environmental influence on a subsystem, concerning the minimum coupling condition, 
our metrics focus data object types and external event types of subprocess models. Considering the 
ontological expressiveness of eEPCs (cf. Green and Rosemann, 2000), these modelling constructs are 
most appropriate to define coupling for subprocess models from a structural perspective. In terms of the 
metrics for the strong cohesion condition, data object types of a decomposed eEPC model characterize 
the dependence of a set of output state variables on the corresponding input state variables. This ap-
proach builds on a particular operationalization for cohesion in process modelling as introduced by 
Vanderfeesten et al. (2008) and was adapted for this research. Actually, the interpretation of cohesion 
on the base of data object types is most appropriate to capture the condition’s initial purpose.  

5.2 Benefits and Restrictions 

Judging the quality of a decomposition by referring to the metrics as introduced brings about some 
restrictions: first, because the values of the metrics are not standardized, and considering the complexity 
of entrepreneurial working procedures documented as process models in practice, the results can cur-
rently only be thoroughly interpreted in case equivalent decompositions are compared to each other. 
Additionally, a general proposition as to whether some conditions are more important than others cannot 
be done. Generally, the aggregation of all metrics to an overall value across all decomposition conditions 
remains an open issue. More, the application of some of the metrics requires, to a certain degree, users’ 
process knowledge. This is because the metrics do consider more than only the structural aspects of a 
model (e.g., metrics 3, 4 or 10). In addition, it is hard to determine how much effort (time or resources) 
would be necessary to improve a metric’s value of “0.148” for metric 8 to a value of “0.005” for example 
(see Table 6). No practical experiences exist on that yet. Furthermore, by merging subprocess models, 
the values for the metrics 1 and 2 regarding “minimum coupling” can be optimized. In an extreme case, 
this might result in a single process model only, which, however, is counterproductive to the idea of 
decomposition. Considering this, a decomposed model should be assessed on base of all conditions and 
metrics accordingly. 

Besides these restrictions, the application of the metrics gives valuable insights into the quality of a 
decomposition, and is beneficial for the following reasons: first, the metrics capture properties of a well-
performed decomposition by reverting to Wand and Weber’s decomposition conditions and represent a 
manageable approach for evaluating decomposed eEPC models. In this regard, the metrics for the min-
imum coupling condition, the strong cohesion condition, and the determinism condition (for dealing 
with internal events) provide advice on how to assess a decomposition based on its structure and the 
design of the subprocess models without requiring process knowledge or a deeper analysis of the under-
lying semantics. However, contrary to approaches that focus the structure of a process model, the de-
composition model also takes into account the semantics, e.g., by the minimality or losslessness condi-
tion. Further, we propose ideal values for the metrics. The “distance” of the values received from apply-
ing the metrics to the “ideal values” as proposed enable the initial assessment of the coherence of a 
decomposed process model with the decomposition conditions. Second, the calculation can partly be 
automatized by the implementation of the metrics as a tool, which considerably speeds up the quality 
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assessment procedure, reduces cognitive efforts and the likelihood of errors of a manual calculation. 
Corresponding means to assess the quality of decompositions are missing yet. So, the user is supported 
in choosing an alternative from equivalent decompositions. Third, we introduce metrics for both the 
model level and the holistic decomposition, which is decisive because excerpts from a large process 
model may be relevant for particular users only. For instance, employees may focus on those subprocess 
models for specifying functional requirements during IS development that visualize the working proce-
dures they are involved in. Therefore, particular users will search for information on certain model levels 
only, which, in turn, should meet the quality requirements as stipulated by the decomposition conditions 
just as the decomposition as a whole should do. Because of that, the metrics do not only allow to judge 
the decomposition as a whole but also particular model levels, which substantiates their practical ap-
plicability. Summing up, despite the mentioned restrictions, the metrics are beneficial means to assess 
the quality of a decomposition objectively, supporting the delineation of subprocess models.  

6 Conclusion and Outlook  
Process modelling is a decisive task for today’s companies considering business transformation initia-
tives in terms of digitalization. Decomposition is seen as an effective means for raising the understanda-
bility of a process model (Reijers et al., 2011; Mendling et al., 2010). Still, the properties that character-
ize a “good” decomposition remain an open question. In our work, we develop metrics to judge the 
coherence of a decomposed eEPC process model with the decomposition conditions of Wand and We-
ber.  

Our work is beneficial for research and practice alike: our set of metrics, based on the decomposition 
conditions of Wand and Weber, contributes to the academic discussion on how to decompose process 
models purposefully and on properties that characterize a well-performed decomposition (cf. Milani et 
al., 2016). They provide a clear definition of the concept of decomposition in the light of Wand and 
Weber’s decomposition conditions and emphasize the data view (external events, data object types) for 
the delineation of subprocess models. In sum, our research constitutes elementary groundwork for the 
discussion of decomposition in process models as well as for the fuzzy concept of process model quality 
and understandability in general. Corresponding means to evaluate decomposed process models are not 
found in literature yet. Thus, we provide practitioners with measures to judge the quality of decomposed 
models. For this, we implemented a prototype, which partly automatizes the calculation. This reduces 
the effort required to assess the quality of a decomposition drastically. In addition, this eliminates the 
likelihood of calculation errors. The clear advice the metrics provide regarding determinism, minimum 
coupling and strong cohesion can support a modeller in properly delineating subprocesses and choosing 
one of several equivalent alternatives of a decomposed model.  

A limitation of our research is that the consolidation of the single results of each metric to form a holistic 
view on a decomposition – across all conditions – still remains an open issue. The main reason for this 
are the ontological differences between Wand and Weber’s decomposition conditions and the eEPC that, 
in consequence, restrain a one-to-one mapping of the decomposition conditions for eEPCs. As a further 
consequence, it is not possible for the metrics to capture completely the conditions’ initial purpose of 
Wand and Weber. Further, a fully automatized calculation is not possible, as some metrics need domain 
knowledge. To receive a manageable set of metrics, not all the ideas of the original decomposition con-
ditions can be mapped to modelling with eEPCs. Moreover, the practical experience of applying the 
metrics is limited to the mentioned modelling project with the university administration so far. Thus, we 
will realize further applications in future.  

In a future work, we will develop metrics for other modelling languages, e.g., BPMN, as well. In addi-
tion, our metrics will be applied in further case studies for evaluation purposes. More, we will conduct 
empirical studies with modellers to obtain feedback on the metrics’ usability.  
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